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REVIEW ARTICLE

A Review of Current Concepts of the Etiology and
Treatment of Myopia

Jeffrey Cooper, M.S., O.D., F.A.A.O. and Andrei V. Tkatchenko, M.D., Ph.D.

Abstract: Myopia occurs in more than 50% of the population in many
industrialized countries and is expected to increase; complications associ-
ated with axial elongation from myopia are the sixth leading cause of
blindness. Thus, understanding its etiology, epidemiology, and the results
of various treatment regiments may modify current care and result in
a reduction in morbidity from progressive myopia. This rapid increase
cannot be explained by genetics alone. Current animal and human research
demonstrates that myopia development is a result of the interplay between
genetic and the environmental factors. The prevalence of myopia is higher
in individuals whose both parents are myopic, suggesting that genetic
factors are clearly involved in myopia development. At the same time,
population studies suggest that development of myopia is associated with
education and the amount time spent doing near work; hence, activities
increase the exposure to optical blur. Recently, there has been an increase in
efforts to slow the progression of myopia because of its relationship to the
development of serious pathological conditions such as macular degener-
ation, retinal detachments, glaucoma, and cataracts. We reviewed meta-
analysis and other of current treatments that include: atropine, progressive
addition spectacle lenses, orthokeratology, and multifocal contact lenses.

Key Words: Myopia—Myopia control—Atropine—Orthokeratology—
Multifocal contact lenses—Progressive addition lenses—Axial elongation.

(Eye & Contact Lens 2018;0: 1–17)

M yopia is a common and yet perplexing ocular disorder.
Once viewed as a benign refractive condition, today myo-

pia, even at low levels, is associated with increased risk for numer-
ous ocular diseases.1 Researchers have reported on the myopia
epidemic, which is occurring worldwide.2 Although the exact eti-
ology of myopia remains elusive, it appears to have both genetic

and environmental components,3 making prevention and treatment
both challenging and individualized. Stopping the progression of
myopia has the potential to positively affect quality of life and
ocular health. Popular control options today include progressive
addition lenses (PAL), topical atropine, orthokeratology (OK)
lenses, and multifocal contact lenses. The intent of this review is
to provide the most current information about myopia etiology and
treatment strategies with the goal that ocular health may be pre-
served.

PREVELANCE AND ETIOLOGY OF MYOPIA
Myopia is the most common ocular disorder worldwide.4 The

prevalence of myopia in the United States has increased from 25%
to 44% between 1972 and 2004.5–7 In urban communities in Asia,
the prevalence is greater than 80%.8,9 The prevalence is much
lower in underdeveloped areas in the world such as Sherpa in
Nepal.10

The economic burden of eye diseases is approximately $139
billion in the United States, with nearly $16 billion spent on
myopia correction alone.5,6,11 Myopia represents a major risk fac-
tor for a number of other ocular pathologies such as cataract,
glaucoma, retinal detachment, and myopic maculopathy, which is
comparable to the risks associated with hypertension for stroke and
myocardial infarction.1,12 Taking into account pathological com-
plications of myopia and other serious pathologies associated with
the disease, myopia not only negatively affects self-perception, job/
activity choices, and ocular health,13–15 but also represents one of
the leading causes of blindness in the world.16 The yearly inci-
dence of retinal detachments is 0.015% in patients with less than
4.74 diopters (D) myopia and it increases to 0.07% in myopia
greater than 5 D and 3.2% myopia greater than 6 D.17,18 Myopic
patients also have great risk of developing macular choroidal neo-
vascularization, that is, 2X for patients with 1 D to 2 D of myopia;
4X with 3 D to 4 D of myopia; and 9X for 5 to 6 D of myopia.19 It
is estimated that 4.8 billion people (one half of the world’s pop-
ulation) will be affected by myopia by 2050.20 A recent study
reported that 10% of Asian high school students have high myopia,
which increases the risk for future retinal disease.21

Historically, some eye care professionals have believed that
myopia is a hereditary anomaly, whereas others have believed that
myopia is environmentally induced. However, human and animal
studies conducted over the last four decades suggest that develop-
ment of myopia is controlled by both environmental and genetic
factors.22–25

Human population studies have revealed that environmental
factors, such as near work and reading, play an important role in
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the development of myopia.26–32 However, this is not without
some controversy.33 Zylbermann et al.34 analyzed the incidence
of myopia in two groups: Orthodox Jewish students (male and
female, where males, unlike females, spent the majority of the
day reading) and secular Jewish students (male and female, where
both men and women spent less time reading than the male stu-
dents in the orthodox Jewish schools). They found that the Ortho-
dox Jewish male students had a much higher incidence and degree
of myopia as compared to the other three groups of students. This
finding suggests that reading was the factor that caused myopia.
In addition, there are a number of epidemiological studies that

show that myopia is more common in urban areas, among
professionals, educated patients, computer users, university stu-
dents, and associated with increased intelligence.35–43 There is
evidence that the intensity of reading may be more important than
the actual time spent reading.44 Myopia is also increased in indi-
viduals who perform tasks requiring increased use of eyes such as
microscopists.45 These and other findings of the association
between near work and myopia were complemented by the obser-
vations that near work and reading are associated with the lag of
accommodation, that is, insufficiently strong accommodative
response to near objects, which places the plane of best focus
behind the retina (hyperopic defocus) when the subject performs
near work tasks.46,47 This observation led to the theory that the
optical blur such as produced by the lag of accommodation may be
the signal that drives excessive eye growth and causes my-
opia.27,46,48–51 This theory is supported by the numerous animal
studies, which have found that degradation of visual input using
either diffusers or negative lenses causes excessive eye growth and
myopia in species as diverse as fish, chickens, tree shrews, mon-
keys, guinea pigs, and mice.52–67

Wiesel and Raviola were the first to induce experimental myopia
in an animal model. They placed a translucent screen over
a monkey’s eye causing it to become severely myopic; however,
when total occlusion was used instead, there was no change in the
length of the eye.61,68 Thus, stimulation of the retina with a blurred
image results in alteration of the growth signals within the eye.
Numerous studies performed in animals using both positive and
negative lenses have demonstrated that the eye will change its axial
length (AL) to accommodate for the lens placed in front of the
eye.69–72 This change is reversible because some animals are able to
recover when the visual stimuli is removed.73 This change in AL
occurred even if the optic nerve was severed.74 It occurred in half
the eye, if only half the eye was exposed to blur using a diffuser or
plus or minus lenses.75 The fact that the eye responds to local blur with
local changes even when the optic nerve is severed demonstrates that
the signaling cascade regulating refractive eye development is within
the eye itself and does not require a feedback from the brain (Fig. 1).
Rada et al.76 reported that the retina provides remodeling signals to the
sclera by which the eye alters its shape to place an image on the retina,
that is, emmetropization.
Smith et al. experimentally asked the most important question.

Does the eye respond to foveal blur, peripheral blur, or equally to
both?77,78 Smith created a series of lenses in which the center
was minus and the periphery was plus and lenses in which the
center was plus and the periphery was minus. In both cases, the
length of the eye changed in response to the peripheral lens power.
For instance if the central lens was plus and the peripheral part of
the lens was minus, the eye elongated. Lastly, Smith et al.79 ablated

the macula of a number of monkeys. In this instance, the eyes still
changed their AL in response to the lens power. These studies
suggest that defocus information is summed up across the entire
surface of the retina and the integrated signal regulates the growth
of the eye (Fig. 2).74,78,80 Many clinicians and researchers believe
that these animal studies have a direct relationship to the develop-
ment of axial elongation or myopia and they have suggested that
treatment should be based on these models.2,78,81

Myopia seems to progress the most between ages 8 and 15
(Caucasians X¼0.6 D/year. and Asians X¼0.7 D/year.) and then
begins to slow down.82–84 Mutti et al.85 reported that in a large
cohort of subjects, which developed myopia, a year or two before
the onset of myopia, hyperopic defocus developed in the periphery
of the eye along the horizontal meridian. This relative hyperopia is
believed to be growth signal. If this hyperopic, defocus is altered
optically to create myopic defocus by using plus power in the
periphery; according to this theory, a stop signal is created. This
is the basis for most optical treatments.77

Myopia increases the most during the winter and the least during
the summer months.86,87 It is unknown if this is because of
increased school work, decreased sunlight, or decreased time out-
side. In previous generations, myopic progression was assumed to
end at age 18.88 However, that has changed since more students
have entered graduate school followed by jobs requiring 8 hr of
sustained computer work.43 This conjecture was recently studied in
a cohort of post-university graduates with a mean age of 35.89

Myopia was found to progress in approximately 10% of the cohort
who spent a lot of time in front of computers. Those subjects who
did not spend time in front of computers did not progress as much.
In addition, Bullimore et al.90 reported that 21% of contact wearers
between the ages of 20 and 40 years of age progressed at least 1 D
over 5-year period of follow-up.
All these human and animal studies strongly suggest that

environmental factors play a an important role in the development
and progression of myopia; however, human population studies
suggest the contribution of genetic factors accounts for at least 70%
of variance in refraction.91–95 It is clear that the incidence of myo-
pia increases when both parents have myopia.38,96 Numerous stud-
ies have shown that the refractive error of the parents is the most
important predictor of the development of myopia.97,98 Strong sup-
port also comes from studies comparing monozygotic99 and dizy-
gotic twins.91,100,101 The refractive error is thought to be influenced
by multiple interacting genes.91–93 Multiple chromosomal loci,
which are linked to human myopia, have been identified.23,102–128

However, myopia appears to be a rather heterogeneous disease
because the genetic loci and genetic variants associated with myo-
pia in different families and ethnic groups are often dis-
tinct.23,25,102–127 Considering that complex quantitative traits
such as myopia are often controlled by dozens or even hundreds
of chromosomal loci,129 and that the identified chromosomal loci
could account for less than 25% of myopia cases,107 only a small
fraction of chromosomal regions that control refractive eye devel-
opment has been identified.
Thus, both environmental and genetics factors have been shown

to contribute to myopia development22–25; however, it was not
clear whether these factors act independently or if there was some
form of interaction. Recent work by Tkatchenko et al.3 has helped
consolidate the dichotomy of views related to the etiology of myo-
pia, that is, genes versus environment. These authors studied
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a three-way interaction between age, time spent reading, and
genetic variation at APLP2 gene locus. It was found that children
who spent a “high” amount of time reading and who had the
myopic version of APLP2 gene were 5 times more likely to
develop myopia compared to those children who spent “low”
amount of time reading. On the contrary, children who carried
a normal version of APLP2 did not develop myopia even if they
were exposed to high levels of reading. To confirm the human
findings, they studied refractive eye development in APLP2 knock-
out mice and found similar interaction between APLP2 and visual
experience in mice. This study demonstrated for the first time
gene–environment interaction in myopia development and sug-
gested that genetic background of an individual determines the
impact of environmental factors on refractive eye development.

TREATMENT OF MYOPIA
The incidence of retinal detachment and macular degeneration

increases logarithmically above 2 diopters of myopia (Fig. 3).1 To
put this in perspective, keeping myopia at 21.00 versus 23.00 D
reduces the risk of macular degeneration by 4 times and retinal
detachment by 3 times. Brennan130 reported that reducing progres-
sion by 33% would result in a 73% reduction in myopia progres-
sion above 5 D; if the reduction rate improved to 50%, then there
would be 90% reduction of myopia above 5 D. Thus, myopia
control becomes an increasingly important issue because recent
environmental changes have not only resulted in a sharp increase
in the incidence of myopia worldwide, but caused an increase in
the age of progression and the ultimate increase in the magnitude of
the refractive error. In our opinion, patients should be presented
with the current risks and benefits of the various treatment options
available for myopia control.
Animal and human studies have important practical consequen-

ces for the treatment of myopia. They specifically suggest that
reducing lag of accommodation, reducing both central and
peripheral defocus, and blocking myopiagenic signaling in the
eye should slow the progression of myopia. Considering that the
information about signaling pathways underlying myopia devel-
opment is limited, the currently considered treatment modalities for
control of myopic progression include optical correction such as
bifocal spectacle lenses, progressive addition spectacle lenses,
under-correction, OK, multifocal contact lenses, and increased

exposure to outdoor activities, with the notable exception of
atropine which has been shown to block myopiagenic signaling
albeit with some uncomfortable side effects.81

Spectacles
Bifocal spectacle lenses were the first to be used extensively to

control myopia progression. The lenses were prescribed based on
the assumption that myopia was a response to prolonged accom-
modation producing optical blur.51,81,131,132 There have been
a number of retrospective studies, which showed that bifocals
and PALs slow the progression of myopia.133–135 On average,
these studies suggested that myopia was slowed by 40%. However,
these studies had some issues with experimental design, for exam-
ple, they were retrospective, unmasked, etc. The COMET (The
Correction of Myopia Evaluation Trial) study was designed to
determine if a +2.00 D PAL slowed the progression of myopia
as compared to a single-vision (SV) full correcting spectacle
lens.136 This NIH/NEI prospective, multicenter clinical trial dem-
onstrated that in the first year, PALs slowed the progression of
myopia by 20%. However, the effect was significantly reduced
in years 2 to 4. The net reduction was 0.2 D, which was clinically
insignificant but reached statistical significance. The progressive
lenses were the most effective when both parents were myopic,
there was a large lag of accommodation and/or the children had
esophoria at near.51,137

Recently, Cheng et al.138 studied the use of high fitting executive
bifocal spectacle lenses with base-in prism as compared to SV
lenses in a group of Canadian Asians. The experimental lens
slowed the progression of myopia by 40%. However, this study
was not masked and was not double-blinded. In 2011, Shi-Ming Li
et al. performed a meta-analysis of 9 clinical trials in which powers
of PALs ranged from +1.5 to +2.0 D and found that PALs slowed
myopic progression by 0.25 D/year as compared to SV lenses. The
effect was greater in Asian children as compared to Caucasians and
also greater in children who had a higher level of myopia at base-
line and who progressed at a more rapid rate (Fig. 4).139

In a novel experiment, spectacle lenses, which were designed to
reduce peripheral hyperopic defocus, were evaluated to determine
their effect on the progression of myopia in Chinese children aged
6 to 16 years.140 The authors reported that none of the spectacle
lenses had any significant effect in slowing the progression of
myopia. Failure to achieve a significant result is believed to be

FIG. 1. Regional blur causes axial
elongation. Regional retinal blur cre-
ated in half the retina causes regional
elongation of the eye. This occurs even
when the optic nerve is cut, but will not
occur if atropine is injected into the
eye. The eye recognizes the direction of
the blur, that is, plus or minus lenses
and the region of retinal blur. Reprinted
with permission from Cooper J, Schul-
man E, Jamal N. Current status on the
development and treatment of myopia.
Optometry 2012;83:179–99.

Eye & Contact Lens � Volume 0, Number 0, Month 2018 Myopia and Treatment

Copyright� 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Contact Lens Association of Opthalmologists.3



related to the constant changing of eye position when viewing
through the lenses.
Historically, many eye care professionals have under-corrected

myopia in the belief that the myopic progression will slow down as
a result of reduced accommodation. However, with today’s knowl-
edge that blur affects the ability of the eye to become emmetropic,
this is intuitively incorrect. Two recent studies have demonstrated
that under-correction actually results in mild acceleration of myo-
pia progression.141,142 Thus, under-correction should not be used to
slow myopic progression.

Contact Lenses
For years, it was believed that gas permeable contact lenses

slowed the progression of myopia. However, it should be
remembered that gas permeable contacts typically are prescribed

when myopia begins to slow down (12 and older) and that these
contact lenses flatten the cornea. In a number of well-controlled
clinical trials, it has been shown that neither conventional soft nor
gas permeable contact lenses alter the progression of myopia.143,144

In 2003, Reim et al.145 performed a retrospective study of 253
children (ages 6–18) on the ability of OK to slow the progression
of myopia. He reported that the rate of progression was slowed
from 0.5 to 0.13 D/year. Subsequently, there have been a number
of prospective clinical trials, which have demonstrated that OK
tends to slow the progression of myopia by 40% using AL
measurements and wash-out cycloplegic measurements.146–154

Two separate meta-analyses of these studies, which included 435
patients across 7 studies, demonstrated support for OK’s ability to
slow myopic progression.155,156 All 7 studies reported AL
changes after 2 years, whereas 2 studies reported vitreous chamber
depth changes. The pooled estimates indicated change in AL in the
OK group. Myopic progression was reduced by approximately
45% (Fig. 5).
Swarbrick et al.152 studied 26 myopic children (11–17 years

of age) of East Asian ethnicity using a crossover design study.
All of the children were fitted with an overnight OK lens in one
eye and a conventional rigid gas-permeable (RGP) lens for day-
time wear in the contralateral eye. After 6 months, the lens–eye
combinations were reversed and lens wear was continued for
another 6 months. After 6 months of lens wear, the average AL
of the RGP eye had increased by an average of 0.04 mm,
whereas the OK eye showed no change. After the second 6-
month phase of lens wear, the OK eye showed no change from
baseline in AL, whereas the conventional RGP eye demon-
strated a significant increase in mean AL, that is, 0.09 mm. In
summary, the conventional RGP lens-wearing eye showed pro-
gressive AL growth (myopic progression) throughout the study
while the OK eye did not.
There have been two other OK studies that have some reason-

able long-term data (5 years and 7 years) demonstrating the myopia
control effect of OK.153,154 Orthokeratology provides patients with
a “wow” factor and the elimination of daily wearing of contact
lenses or glasses. This is particularly beneficial for more athletic
children. Visual acuity is quite good with the majority achieving
20/20 and over 90% achieving 20/30.157

Many eye care professionals believe that the change in the
curvature of the cornea is achieved by mechanical flattening of the
cornea. However, there is a strong evidence that the change in
refraction is achieved by horizontal movement of epithelial cells
that occurs from the reverse pressure made from the seal created in
the mid-periphery bearing area of the lens.158,159 Proper fitting

FIG. 2. Image shells on the retina.
Once the eye elongates in myopia,
optical images from spherical lenses no
longer fall on the retinal plane. The
peripheral images are out of focus fall-
ing on a plane behind the retina. It is
thought that the relative hyperopic
error created is the stimulus for axial
elongation. Current optical treatments
move the peripheral focus in front of
the retina.

FIG. 3. Risk of ocular disease with increased myopia. It is readily
apparent that the risk of retinal detachment and macular degeneration
increases logarithmically with the increase of acquired myopia.139 The
risk begins with as little as 1.00 D of myopia. Reprinted with permission
from Flitcroft DI. The complex interactions of retinal, optical and
environmental factors in myopia aetiology. Prog Retin Eye Res
2012;31:622–60.
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requires a 20-mm postlens/precorneal tear film. The most signifi-
cant complaints found with OK are halos secondary to the spherical
aberration, which also reduces visual acuity and contrast sensitiv-
ity, or discomfort from the lenses.160

The true risk of infection with OK is unknown.161 Any risk from
infection in a voluntary treatment program that involves children
must be weighed against the potential benefit of future reduction of
ocular complications such as retinal detachment and macular
degeneration. The best estimate of the risk of microbial keratitis
(MK) from OK is slightly less than from extended wear of contact
lenses. The overall rate is 7.7 per 10,000 years of wear.162 This
compares to 1.4 per 10,000 patient years of wear in nonwearers,
11.9 per 10,000 patient years of wear in silicone hydrogel daily
wearers, and 20 per 10,000 patient years of wear in soft contact
lens extended wear.163 This is not a surprise because the lenses are
on for a maximum of 8 to 10 hr per day compared to 24 hr for
extended wear lenses, the lenses are more oxygen permeable than
soft lenses, and the surface of the lens is smoother or slipperier than
soft lenses, so that a biofilm does not stick to the lens as easily. The
incidence of MK is higher in children than adults.164 The low
incidence should not be dismissed; however, the majority of in-

fections can be handled with aggressive antimicrobial therapy. The
rare cases that result from Acanthamoeba or Fusarium infection
often result in an avoidable damage to the cornea.165 Thus, proper
hygiene and cleaning is imperative. These lenses, like all other
contact lenses, should never be soaked in tap water. Because of
the nature of the wearing of the lenses at night, there is greater
opportunity for the parents to supervise the wearing of these lenses
versus regular soft lenses.
The largest effect from OK is achieved in children who have

moderate myopia (between 1.25 and 4.0 diopters) and have larger
pupils. It is more difficult to get good results with lower (presumed
to be because of the lower mid-periphery plus induced) or higher
myopia (inability to achieve targeted prescription).154,166–168 Infre-
quent corneal infiltrates can be minimized by the use of hydrogen-
peroxide solutions and mild flattening of the landing zone of the
lenses. Published dropout rates are around 20%; however, the chil-
dren who stay in the program are happier than children fit with
traditional contact lenses.148

Cho and Cheung169 evaluated the rebound effect when OK
lenses were discontinued by comparing the AL in two groups.
Group 1 wore OK lenses for 24 months, discontinued lens wear

FIG. 4. Meta-analysis of progressives and bifocal spectacle lenses. Meta-analysis139 of 9 clinical trials in
which progressive additional and bifocal spectacle lenses (MFL) are compared with single-vision lenses
(SVL) using spherical equivalent (A) and axial length (B). Mean difference between SVL and MFL
was 0.25 D per year and in those that reported axial length changes, the difference was 0.012
mm.137,244–251 The benefit of MFL was greater in Asian versus white children (0.32 D vs. 0.10 D) and/or
those that initially had a higher baseline refraction. (Less than 3 D at baseline ¼ 0.16 D vs. greater than 3
D at baseline 0.39 D). It should be noted that these findings were not replicated in an analysis of 16
treatment protocols for myopia.243 Reprinted with permission from Li SM, Ji YZ, Wu SS, et al. Multifocal
versus school-age children: a meta-analysis. Surv Ophthalmol 2011;56:451–60.
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for 7 months, wore SV spectacles (phase I), and then resumed OK
lens wear for another 7 months. Group 2 was a control group,
which wore spectacles. Stopping OK lens wear resulted in a more
rapid increase in AL as compared to those wearing spectacles
during the initial 2-year myopia control study (rebound effect).
Axial elongation slowed again when OK was resumed. This study
suggests that there is a rebound effect with OK lenses.
Recently, there has been renewed increased interest in the use of

soft lenses to create similar optics as OK.170–176 To design an
optically similar lens, one would need to manufacture a multifocal
lens with a distance center. Smaller optic zones are preferable
because the larger the retinal area stimulated with strong plus
lenses, the greater the effect in slowing the progression of myopia.
Walline et al.175 fit 40 children with soft multifocal contact lenses
(Proclear Multifocal “D”; CooperVision, Fairport, NY) with
a +2.00 D add power and compared them to a historical
age-matched control group of SV distance lens wearers. The
adjusted mean progression of myopia at 2 years was
21.0360.06 D for the SV contact lens wearers and 20.5160.06
D for the soft multifocal contact lens wearers (P,0.0001). The
adjusted mean axial elongation was 0.4160.03 and
0.2960.03 mm for the SV and soft multifocal contact lens wearers,
respectively (P,0.0016). Soft multifocal contact lens wear resulted
in a 50% reduction in the progression of myopia and a 29% reduc-
tion in axial elongation during the 2-year treatment period. One
may question Walline’s findings, however, because they were com-
pared to a historical control. In addition, it is well known from the
COMET studies that the greatest myopia-controlling effect of any
intervention happens in the first year. Lastly, there are no data on
discontinuing the lenses with possible rebound effects.
In a recent study, children, who were found to have myopic

progression after 1 year of traditional contact lens or spectacle use,
were placed in 1 of 3 groups: (1) radial refractive gradient (SRRG)
contact lenses, (2) OK, and (3) a SV glasses.176 The SRRG is an
experimental soft contact lens with a distance center and high plus in

the mid-periphery. After 2 years, the mean myopia progression val-
ues for the SRRG, OK, and SV groups were 20.56, 20.32, and
20.98 D, respectively. This represents a reduction in myopic pro-
gression of 43% and 67% for the SRRG and OK groups as com-
pared to the SV group. In addition, the AL increase was less by 27%
and 38% in the SRRG and OK groups as compared to the SV group.
Although these results are encouraging, the SRRG lens is not cur-
rently commercially available. In a different study, Aller et al.177

used an Acuvue Bifocal (Johnson & Johnson, Jacksonville, FL)
center distance bifocal soft contact lens in selected myopic esophoric
patients and achieved almost a 70% reduction of myopia after 1 year,
but the applicability of this finding outside of esophoric patients is
not known. A meta-analysis (Fig. 6), which included 587 subjects,
from 8 studies found that concentric ring and distance centered
multifocal designs slowed myopia progression by 30% to 38%
and 31% to 51% for axial elongation over 24 months.178 Turnbull
et al.179 performed a retrospective case series analysis of 110 myopic
children and reported that multifocal soft lens and OK slowed myo-
pic progression equally, that is, OK before treatment progression
X¼21.17 to after treatment 20.09 D/year; dual focus soft contact
lens before progression X¼21.15 to after treatment 20.10 D/year.
Using a similar retrospective case series analysis as was used by
Turnbull et al.,179 Cooper et al.180 performed a retrospective case
series of 32 myopic children and reported that a center distance
extended depth of focus soft multifocal contact lens design slowed
myopic progression with before progression X¼20.85 D to after
treatment 20.04 D/year right eye and before progression X¼20.90
D to after treatment 20.04 D/year left eye.
Figure 6 presents a meta-analysis of the use of soft multifocal

contact lenses to slow the progression of myopia.178

Pharmaceutical Agents
In addition to manipulating visual input with lenses to control

myopia, atropine has been shown to slow the progression of the
disease. Atropine was first used by Wells in 1900 to stop the

FIG. 5. Meta-analysis of orthokeratology. Meta-analysis of 7 OK studies155,156 was performed, which
included 435 subjects who were aged between 6 and 16 years.148,150,151,241,252–254 Meta analysis found
a mean difference between controls and OK patients of 0.26 mm over 2 years. This is a 40% reduction in
the progression of myopia. Reprinted with permission from Si JK, Tang K, Bi HS, Guo DD, Guo JG, Wang
XR. Orthokeratology for myopia control: A meta-analysis. Optom Vis Sci 2015.
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progression of myopia by “paralyzing” accommodation. Analysis
of a number of retrospective studies using atropine has shown that
1% atropine tends to slow the progression of myopia by almost
80% (Table 1).181–193 The effect is by a nonaccommodative mech-
anism,70,80,194 because a number of studies have shown that atro-
pine inhibits AL: in animals that have no accommodative
mechanism195; when the optic nerve has been cut thus eliminating
feedback necessary for accommodation74; or when regionally
induced AL changes occur from blur.71 Though the exact mech-
anism by which atropine inhibits myopia progression is
unknown, multiple studies have indicated that atropine has an
effect altering the sclera.196–198 It has, also, been suggested that
ultraviolet (UV) light (secondary to pupil dilation) may increase
collagen cross-linking within the sclera, thereby slowing scleral
growth.199

The most common complaints when using atropine, however,
are pupil dilation and temporary paralysis of accommodation.
These issues can be mitigated by photochromic, PAL glasses.
There have been, also, some concerns of increased UV exposure
and long-term retinal damage.200 However, UV exposure (other
than oblique rays) can be reduced by the use of UV coatings on
the lenses, and the lost accommodation can be mitigated by the use
of PALs. Besides enjoying a good safety profile with long-term
clinical use,201 Electroretinogram results (which are a sensitive
indicator for early retinal damage) are normal in patients using
atropine for a long term.81,201–203 In the 2-year ATOM study
(N¼400), there were no serious adverse effects. Reasons for with-
drawal included: allergic or hypersensitivity reactions, discomfort
(4.5%), glare (1.5%), blurred near vision (1%), logistical difficul-
ties (3.5%) and others (0.5%). Similar minimal adverse rates have
been reported by other atropine studies. The use of 1% atropine
seems to have its strongest effect in year one. Many of these earlier
studies demonstrated long-term effectiveness of atropine186,189,192

(Table 1). Chiang et al.204 studied the effect of 1% atropine used

once a week for 1 month to 10 years. They reported a mean pro-
gression rate of 0.08 D/year in the compliant group and 0.23 D/
year in the partially compliant group.
Chua et al.205 (ATOM1) studied the effect of 1% atropine in

a group of 400 children (13.5% dropout rate) where one group
received atropine, whereas the other group received a placebo.
Only one eye of each child was chosen for treatment. The mean
progression in the control eye after 2 years was 0.6 D/year and in
the atropine-treated eye was 0.14 D/year. This represents a 77%
reduction in the progression of myopia. Furthermore, the AL meas-
urements in the eyes, which received atropine, remained essentially
unchanged (0.02 mm over 2 years). There were no serious adverse
events with the atropine being well tolerated. Figure 7 depicts the
percentage of progression in patients on 1% atropine versus
control.
There have been a number of studies that evaluated the

relationship of dosage of atropine to the reduction of progression.
Shih et al.206 evaluated the effect of different doses of atropine on
200 children (6–13 years of age) who were randomly prescribed
one drop of 0.5%, 0.25%, or 0.1% atropine, or 0.5% tropicamide
(control group) in both eyes nightly. The mean progression of
myopia was 0.0460.63 D/year in the 0.5% atropine group,
0.4560.55 D/year in the 0.25% atropine group, and 0.4760.91
D/year in the 0.1% atropine group, as compared to 1.0660.61
D/year in the control group. At the end of the 2-year treatment
period, 61% of children in the 0.5% atropine group, 49% in the
0.25% atropine group, and 42% in the 0.1% atropine group had no
myopic progression (Fig. 8). In another study, the concentration of
atropine was varied from winter (0.5%) to summer (0.1%) based on
the assumption that myopia progresses less during the summer.
This allowed children to have less pupillary dilation during the
summer months when the sunlight and photophobia is the great-
est.207 This regimen slowed myopic progression by 77%. Fang
et al.208 evaluated the efficacy of 0.025% atropine to prevent

FIG. 6. FIG. 6. Meta-analysis of multifocal contact lenses. Meta-analysis,178 which included eight studies
published between 1999 and 2016, that compared single-vision soft lenses with both concentric ring bifocal
soft contact lenses (CCML)170,177,255–257 and peripheral add soft contact lenses (MCL).171,175,176 There was
less myopia progression with both lenses (the CCML had a weighted mean difference [WMD] of 0.31 D and
reduced axial elongation WMD of –0.12 mm, whereas MCL had a WMD of 0.22 D and less axial elongation
of 0.10 at the end of 1 year). This represented a 31% reduction of progression with the CCML and 51%
reduction with MCL. Axial length reduction was also noted: 38% with the CCML and 51% with MCL after 2
years. Reprinted with permission from Li SM, KangMT, Wu SS, et al. Studies using concentric ring bifocal and
peripheral add multifocal contact lenses to slowmyopia progression in school-aged children: a meta-analysis.
Ophthalmic Physiol Opt 2016.
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the development of myopia in a group of children presenting with
the signs of myopic progression. There was a 50% reduction in the
number of children who converted from emmetropia to myopia.
The highest concentration of atropine, which does not cause any
symptoms related to pupil dilation or decreased accommodation
when atropine is used is 0.02%.209

The ATOM 2 study200 evaluated various concentrations of atro-
pine, including the one below that threshold, that is, 0.5%, 0.1%,
and 0.01%. After 2 years, researchers found that all 3 concentra-
tions slowed the progression of myopia. The mean progression
with each concentration (spherical equivalent) was 0.15 D/year
(0.5% atropine), 0.19 D/year (0.1% atropine), and 0.25 D/year
(0.01% atropine)210 (Fig. 9). On first glance, the ATOM 2 study
suggests that myopic progression was slowed with all concentra-
tions, with similar effects between moderate and low concentra-
tions. However, this conclusion is not justified if one uses AL to
measure myopic progression rather than refractive error. Figure 10
depicts the axial change measurements from ATOM 1 and 2 stud-
ies combined at the end of 2 years. The ATOM 1 study showed
a minimal 0.02 mm change in AL over 2 years of time with the use
atropine 1%, whereas the ATOM 2 showed no statistical difference
between the placebo and atropine 0.01% group. This is important
for two reasons. First, if the primary purpose of slowing myopia
progression is to reduce axial elongation which in turn decreases
future retinal complications, then the lower concentrations are not
nearly as effective as atropine 1%. Second, minimal difference
between placebo and atropine 0.01% AL changes versus significant
refractive changes between placebo and atropine 0.01%
should make the clinician question of the “true effect” of atropine
0.01%.
After 2 years, all participants in the ATOM 2 study discontinued

the use of atropine for 1 year. At the end of that year, 24% of the
0.01% group, 59% of the 0.1% group, and 68% of the 0.5% groups
in the original ATOM 2 trial progressed more than 0.5 D of myopia
and were retreated with 0.01% atropine for an additional 2 years.211

This rebound effect was much greater with cycloplegic refractions

TABLE 1. Retrospective Studies of Atropine 1% to Slow Myopic Progression

Author
No. of Children
Completed Study

Length
of

Study Treatment Control Group (Mean Progression) Atropine Group (Mean Progression)

Gimbel,181

1973
594 3 yrs Atropine 1%

qhs
0.41 D/yr 0.14 D/yr

Kelly et al.,182

1975
282 3 yrs Atropine 1%

qhs
0.51 D/yr +0.58 D/yr

Kelly et al.,182

1975
168 2–8 yrs Atropine 1%

qhs
Change in myopia: no change or improved:
2%; 20.75 D: 14%; 1.00 to 1.75 D: 35%;

2.00 to 2.75 D: 22%; 3.00 D: 27%

Change in myopia: no change or improved:
47%; 20.75 D: 34%; 1.00 to 1.75 D: 8%;

2.00 to 2.75 D: 7%; 3.00 D: 1%
Sampson,184

1979
100 1 yr Atropine 1%

qhs and
bifocal
2.25

No control Change in myopia: 20.25 to +0.50 D: 79%;
+0.75 D to +1.00 D: 15%; .+1.00 D: 6%

Bedrossian,186

1979
90 children on atropine
(62 followed for 2 yrs,
28 followed for 4)

4 yrs Atropine 1%
in only
eye

20.82 D/yr +0.21 D/yr

Gruber,188

1985
200 1–7.5

yrs
Atropine 1%

qhs
20.28 D/Y 20.11 D/yr

Brodstein,189

1984
399 1–9 yrs Atropine 1%

qhs and
bifocal
2.25

20.34 D/Y 20.12 D/yr

Brenner,190

1985
79 1–9 yrs No control 20.20

Yen et al.,191

1985
96 1 yr Atropine 1%

qhs and
bifocal
2.25

20.91 D/Y; change in myopia: no change:
6.25%; , or ¼20.50 D: 31.25%; 20.51 to

21.0 D: 31.25%; .21.0 D: 31.25%

20.22 D/Y; change in myopia: no change:
56%; , or ¼20.50 D: 22%; 20.51 to

21.0 D: 19%; .21.0 D: 3%

Earlier studies that used atropine 1% demonstrated a 90% reduction in the progression of myopia. The studies varied from 1 to 15 years of
follow-up. In the first year, many of the studies found a small but clinically significant reduction in the amount of myopia.181–191 Reprinted with
permission from Cooper J, Schulman E, Jamal N. Current status on the development and treatment of myopia. Optometry 2012;83:179–199.

FIG. 7. Atropine 1% versus control in slowing myopic progression.
Data from the ATOM 1 study are pictorially presented and clearly show
the effectivity of atropine over control.205 Seventy percent of the atro-
pine subjects had less than 0.5 D of progression compared with less than
20% of the controls. It is apparent that atropine 1% results in strong
control of myopia progression. Reprinted with permission from Cooper
J, Schulman E, Jamal N. Current status on the development and treat-
ment of myopia. Optometry 2012;83:179–99.
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as compared to AL changes. The “rebound effect” observed in the
ATOM studies can be partially explained by the fact that atropine
has greater cycloplegic effect than 1% cyclopentolate used for the
follow-up refractions, creating an impression that atropine slows
the progression of myopia more than it really does in the first year.
This creates an impression of the rebound effect, which is, in fact,
much smaller than what is observed when doing cycloplegic re-
fractions. Because atropine suppresses the signal for axial elonga-
tion, an abrupt stopping of higher dosages would result in faster
elongation than discontinuation of lower concentrations. These
findings suggest that atropine use should be tapered down rather
than be abruptly discontinued.212

After stopping the use of atropine drops for 1 year, the patients
were re-assessed.213 It was found that the progression of myopia

have resumed in some patients or appeared to have completely
stopped in others. Those patients, in whom progression stopped,
were presumed to be abated (future data are needed to substantiate
this claim), whereas progression continued in others. Those with
continued progression after phase 2 were restarted on 0.01% atropine
and reassessed 2 years later (total of 5 years).211 Those who did not
progress after the discontinuation phase usually did not progress
during the next 2 years of observation. The authors concluded that
0.01% atropine was more effective than the higher dosages in slow-
ing the progression of myopia. A recent meta-analysis suggests that
there is no clinical difference between the effectively of low and high
concentrations of atropine to slow the progression of myopia.214 As
mentioned previously, this conclusion must be viewed cautiously in
light of AL measurements.

FIG. 8. Myopic progression with various doses of
atropine. Shih et al. demonstrated that the ability of
atropine to control progression is directly related to
concentration.206 The higher the dosage, the more
effective atropine is in slowing the progression of
myopia. It is clear that even at a relatively low dosage
of atropine 0.01%, there is a clinically effective
retardation of the progression of myopia. Reprinted
with permission from Shih YF, Chen CH, Chou AC,
Ho TC, Lin LL, Hung PT. Effects of different concen-
trations of atropine on controlling myopia in myopic
children. J Ocul Pharmacol Ther 1999;15:85–90.

FIG. 9. Progression of myopia during 3
phases of ATOM studies. This graph de-
picts the cycloplegic refractions (spherical
equivalent) in all 3 phases of the ATOM 1
and 2 studies.212 The first phase was for 2
years during which subjects were ran-
domized to receive various concen-
trations of atropine (1%, 0.5%). After 2
years, treatment was stopped in all
groups for 1 year of time. Those patients
still showing more than 0.50 diopters of
myopia progression were placed on
atropine 0.01% and followed for another
2 years. Reprinted with permission from
Chia A, Lu QS, Tan D. Five-year clinical
trial on atropine for the treatment of
myopia 2: Myopia control with atropine
0.01% eyedrops. Ophthalmology
2016;123:391–99.
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The rebound results also need to be evaluated with caution:
clinicians do not usually put patients on 1% atropine for 2 years
and then stop the medication. Patients are usually treated with
atropine for many years without interruptions. Studies, in which
1% atropine has been used for many years, found that atropine did
not lose its effectiveness over the long run. The subjects who were
least affected by the atropine treatment had the following character-
istics: (1) 2 myopic parents, (2) developed myopia earlier, and (3)
progressed more than the average of 0.66 D/year.
The 5 years of data suggest that 0.01% atropine was more

effective (and with fewer side effects) in slowing progression of
myopia compared with higher concentrations of the drug. One
must keep in mind, however, that in normal clinical practice,
atropine treatment is typically continued for more than 2 years
without interruption. In summary, these findings suggest that
myopia did not progress with 0.01% atropine in the first 2 years
of the study. Myopia did not progress once treatment was stopped
(discontinuation phase), and individuals no longer needed further
treatment to slow myopia.
Those who progressed more than 0.5 D, when atropine was

discontinued, were more likely to have been on a higher dosage
and needed further treatment. These data suggest that over the long

run, 0.01% atropine is more effective than higher concentrations
and causes minimal symptoms secondary to pupillary dilation or
loss of accommodation, and the 0.01% concentration can be used
for 5 years and then stopped. If progression recurs, treatment with
0.01% atropine can be resumed. If higher concentrations of
atropine are required atropine 0.02% may be tried, the treatment
should be stopped gradually by tapering down the concentration of
the drug.209 The ATOM 2 study does provide compelling support
to begin treatment of myopia with 0.01% atropine, but our clinical
experience is that it might be less effective than suggested. In
addition, if one uses AL measurements rather than refractive error
to monitor effectively of 0.01% atropine versus control to slow
myopic progression, it is apparent that there is no difference
between the 2 treatment arms.

Time Spent Outdoors
Several recent studies suggest that time spent outdoors slows

both onset and progression of myopia in children.215–224 It was also
found that the effect of outdoor activities on myopia is not neces-
sarily related to physical activity and that the shear exposure to
outdoor environment has therapeutic effect.217 These findings trig-
gered a number of investigations trying to pinpoint the exact factor

FIG. 10. Changes in AL and SPH EQ after 2 years of treatment. Figure 10 depicts the changes in axial length
in millimeters (yellow bars going up); spherical equivalent in diopters calculated from the axial length data
(red going down); and cycloplegic automated refractor measurements in diopters (green going down) at the
end of the 24-month treatment period. Themeasurements were derived from the ATOM1 study for atropine
1% and placebo and ATOM 2 for atropine 0.01%, 0.1%, and 0.5%, respectively. It is readily apparent that
there is no real difference between axial length measurements after 24 months between placebo and
atropine 0.01%; moderate changes with atropine 0.1% and 0.5%; and dramatic changes with atropine 1%
(yellow bars). However, the spherical equivalent measurements (green bars), compared with placebo in
diopters, show a much greater change over time again being greatest for atropine 1%. The difference
between the effect of atropine 0.01% and atropine 1% is not nearly as great as the concentration differences.
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(s) responsible for the effect of outdoor activities on myopia. Sev-
eral studies suggested that exposure to brighter light, increased
levels of vitamin D, increased levels of dopamine, or UV light
by itself are responsible for the effect of outdoors on myopia onset
and progression.225–234 However, further studies essentially ruled
out the role of vitamin D and UV light in the inhibition of myopia
development by exposure to outdoors.235,236

Recently Torii et al.234 demonstrated that violet light (VL)
(360–400 nm wavelength) suppresses myopia progression in
chicks and humans. They retrospectively measured the AL elon-
gation among myopic children, who wore either VL blocked eye-
glasses or one of two types of contact lenses (partially VL blocking
and VL transmitting). They found that the VL transmitting contact
lenses suppressed myopia progression more than VL blocking
lenses. They suggested that because VL exposure is limited by
UV protection from being indoors; filtered out UV by panel win-
dow glass; and filtered out UV by glasses, some contact lenses and
sunglasses that increased VL exposure may be a preventive strat-
egy against myopia progression.
There is, also, evidence that increasing the illumination in

classrooms decreases the incidence of myopia.237 Bright light was
also shown to inhibit form-deprivation myopia and reduce

lens-induced (defocus-induced) myopia in animal studies.227–231

However, there is no information whether bright light might have
caused animals to close their eyes because of photophobia caused
by high light intensity, thus, reducing visual input. Moreover, stud-
ies that assessed the effect of outdoors on myopia did not take into

FIG. 12. Percentage of reduction of myopia progression with various
treatments. Calculated percentage of reduction of progression of myo-
pia for each treatment. Meta-analysis numbers243 were used to calculate
the reduction in progression. Meta-analysis only included prospective
clinical trials. Cooper et al.81 previously calculated the reduction in
progression from all published studies without regard to methodology.

FIG. 11. Meta-analysis of 16 different treatments. A meta-analysis243 of 16 different treatments for
myopia was performed using a comparison with either placebo or single-vision spectacle lenses with the
following: high-dose atropine (refraction change: 0.68; axial length change –0.21); moderate-dose
atropine (refraction change: 0.53; axial length change: –0.21); low-dose atropine (refraction change:
0.53 axial length change: –0.15); pirenzepine (refraction change: 0.29; axial length change: –0.09); OK
(axial length change: –0.15); multifocal contact lenses (axial length change: –0.11); and progressive-
addition spectacle lenses (refraction change: 0.14 axial length change). Reprinted with permission from
Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children:
A network meta-analysis. Ophthalmology 2016;123:697–708.
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account the use of sunglasses in bright light, which would reduce
the importance of bright light exposure and emphasize other fac-
tors. Such factors would be the overall substantial differences in the
visual environment between indoors and outdoors.238 The indoor
activities create far more hyperopic defocus (causing myopia)
across the entire surface of the retina than any outdoors activities.
Outdoor activities essentially eliminate any defocus across the
entire visual field that serves as a stop signal for the eye growth
(thus, inhibiting development of myopia). Brighter light intensity
also leads to pupil constriction and increased depth of focus, which
reduces optical blur and increases contrast. Change in contrast, in
turn, would affect the function of amacrine cells, which might
explain the role of dopamine in myopia development in animal
models. Although the exact mechanism responsible for the effect
of outdoor activities on myopia is unknown, spending more time
outdoors clearly has a substantial therapeutic effect on myopia
onset and possibly progression. Therefore, it should be recommen-
ded that children, especially those who have two myopic parents or
show signs of myopia development or progression, spend more
time outdoors as preventive measure of developing myopia.

CONCLUSIONS
In summary, there is strong evidence that myopia is a result of an

interaction between genes and environment and can be slowed by
a variety of treatments. Parents should be aware of what is and is
not effective including the risks and benefits associated with each
treatment option (Figs 11 and 12). Despite none of these interven-
tions having FDA approval/clearance at this time to treat myopia
progression, we believe that with informed consent, an appropriate
treatment plan should be instituted. Today, treatment preferences
seem to vary by country and profession. More eye care professio-
nals in China advocate the use of OK; whereas in Taiwan and
Singapore, more advocate atropine; and in the United States, some
eye care professionals prescribe soft multifocal contact lenses, and/
or advocate OK and some ophthalmologists advocate atropine. In
Taiwan, over 60% of the children with myopia are on atropine.239

Recently, there are data supporting the additive effects of optically
correcting myopic children with OK and low dosages of atropine,
that is, after a year in the study “OK only patients” increased AL by
0.19 mm, whereas “OK and atropine” increased AL by
0.09 mm.240 Because they use different stop mechanisms, it is
not surprising that their effects are additive. There is obviously
the need for more studies into the mechanisms of myopia and
refractive eye development, but the future is encouraging.
Ongoing research already provided some insights into molecular

pathways underlying myopia and could be expected that it will
soon produce new drug targets and drugs for treatment of myopia.
In the meantime, children who have high-risk factors (myopia first
noted around 4 or 5 years. with aggressive progression and parental
myopia) should probably be started with 1% atropine. One might
consider the prophylactic use of atropine 0.01% in children with
a strong risk of development of myopia, that is, 2 parents being
myopic and decreasing hyperopia of 0.5 D/year. On the other hand,
children who become myopic after the age of 8 can be treated with
0.01% atropine, soft multifocal contact lenses or OK. In addition,
patients with more than 6 diopters of myopia can wear soft
multifocal contact lenses or a combination of OK contact lenses
and glasses to obtain an effective treatment result.241 Because soft

multifocal contact lenses, OK and low dosage of atropine seem to
be equally effective,242 patient concerns and compliance may help
guide treatment selection.
Some children tend to prefer their glasses and thus require

atropine. Children who are more athletic usually prefer OK or soft
multifocal contact lenses. Parents who are fearful of overnight
contact lens wear often choose low concentrations of atropine or
soft multifocal contact lenses, whereas parents/patients concerned
about the long-term effects of atropine usually choose OK. Some
patients are concerned with the risks of OK associated with
sleeping in lenses, whereas others are concerned about the long-
term effects of atropine even at low dosages. In addition, distance
center soft contact lenses may have a better indication in myopes
with less than 22.00 D because effectiveness is related initial
refractive error. We often prescribe distance center soft multifocal
contact lenses even though the published clinical evidence is not
yet as strong; however, the perceived risk is less. Finally, children
should be encouraged to spend more time outside and the public
and policymakers should be informed of the potential benefits of
outdoor activities, so that school schedules, perhaps, could be
adjusted to allow more time for outdoor activities during school
hours and after school.
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